Class 6, given on Jan 15, 2010, for Math 13, Winter 2010

1. A SLIGHTLY MORE GENERAL FORM OF FUBINI’S THEOREM

We now want to learn how to calculate double integrals over regions in the plane which
are not necessarily rectangles. Suppose we have a bounded region D in R? whose boundary
is a piecewise smooth curve; for example, D might be a circle, an ellipse, a polygon, or a
region defined by polynomial inequalities. How do we integrate a function f(x,y) over D?

The answer is to define a new function F(z,y), which is equal to f(z,y) on D and 0
everywhere else. If f(z,y) is continuous, then F(x,y) will not necessarily be continuous
but it can only be discontinuous at the boundary of D. We can then enclose D with any

rectangle R, and then calculate
/ / F(x,y)dA
R

Because F(z,y) = 0 outside of D, this double integral still represents the volume of the
solid over D and under z = f(z,y). It turns out that Fubini’s Theorem still holds true for
functions which are continuous everywhere except possibly at a finite number of smooth
curves, if both iterated integrals exist. In particular, we can use iterated integrals to
calculate integrals over regions in the plane which are called Type I and Type II regions.

A Type I region is a region in the xy-plane defined by inequalities of the form a < z < b,
for some a,b, and g1 (z) <y < go(x), for some continuous functions g1 (z), g2(z) on [a,b]. A
Type II region is a region in the zy-plane of the form ¢ <y < d, h1(y) < x < ha(y) for two
continuous functions hi(y), ha(y) on [c,d].

Examples.

e A rectangle R = [a,b] X [¢,d] is both a type I and type II region.

e A disc, such as 2% + 9% < 1, is both a type I and type II region. For example, a
disc can be described in the form of a type I region with the inequalities —1 < z <
1,—vV1—22<y<V1-—a2

e The region between the parabola y = 22 and the interval [—1, 1] on the z-axis is a
type I, but not a type II region. It can be described using —1 < z < 1,0 < y < 22,
but there is no way of describing this region as a type II region. One can see this
intuitively since the intersection of a type Il region with a horizontal line will always
be zero or one line segment, but the intersection of this region with the horizontal
line segment y = 1/2 consists of two line segments.

e The region 1 < 22 4 32 < 4, which is an annulus (a disc with a hole in the middle),
is neither a type I nor a type II region. Nevertheless, we can cut this region up in
such a way so that it becomes a (disjoint) union of type I and/or type II regions.
For example, splitting this region in half using the line y = 0 cuts it apart into two
type I regions.

Suppose we have a type I region D, given by a < x < b,g1(z) <y < g2(x). How do we

calculate the integral of a function f(x,y) over this region? The cross-sectional area of the
volume with coordinate x is evidently given by

g2(x)
A(ﬂ?):/() f(z,y)dy
gi(x

so the double integral of f(z,y) over D is given by
1



//f(:c,y) dA = /b/:j:) f(z,y) dy da.
D

Notice that the bounds of integration in the inner integral are no longer numbers, but
functions of x. Pay close attention to the order of integration — if functions of z appear in
the bounds of the inner integral, then we must integrate with respect to y first. In general,
we are only allowed to place functions in the bounds of integration of an integral if we have
not yet integrated with respect to that variable yet. In a similar way, if we have a type 11
region D defined by ¢ < y < d,hi(y) <z < ha(y), then the double integral of f(z,y) over

D is given by
d rha(y)
//f(:v,y)dAZ// f(z,y) dx dy.
i c Jhi(y)

Examples.

e Calculate the integral of f(z,y) = 2% + y? over the region defined by 0 < z <
1,0 < y < x. This region is a type I region (and also a type II region), with
g1(x) = 0, g2(x) = x. Then the integral in question is equal to

1 px
/ / 22 + 2 dy d.
0 Jo

We calculate the inner integral, with respect to the variable y, and then evaluate
the resulting function at the bounds of integration, which are now functions of x:

1 3 |y 1 3 1 4.3
) yilyfx J :/ 3.2 :/ 4id
/O<yx+3y_0> T Oa:+3 T .3 xT.

Notice that after evaluating the inner integral, we are still left with a function of
x, but that this function depends on the actual bounds of integration in the inner
integral. In this example, we can easily evaluate the second integral we need to
calculate:
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e Sometimes the region you are integrating over is not explicitly described as a type 1
or type II region, and you need to determine the description yourself. For example,
suppose you want to calculate the integral of f(z,y) = x+y over the region bounded
by y = # and y = 2. The first step is to sketch the region of integration, which
in this example involves sketching y = x,y = 2. After sketching this region, one
quickly sees that this region has a simple description in terms of a type I function:
0 < z < 1 (these are the x-coordinates at which y = z,2? intersect), 22 < y <
(since y = 22 is the lower boundary of the region and y = x is the upper boundary
of the region). We can then setup the iterated integral we want to calculate:

1 rx
/ / (x +y)dyde.
0 Jz?
Evaluate the inner integral:

1 2 y= 1 2 4 19,2 4
Yy ‘y—r / 9 T 3 T 3z 3 T
/0<:cy+2y:x2)x Ox—|—2 x+2 T .2 T 23:



Now we evaluate the outer integral:
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Consider the tetrahedron bounded by z =2 — 2z — y,x = 0,y = 0,z = 0. Write
down two iterated integrals, one over a type I region, the other over a type II region,
which equal the volume of this tetrahedron. Evaluate both integrals to check that
they are equal, and then check that this matches with the answer given by geometry.

We start by sketching the volume we want to calculate. In this case, we are
looking at the volume of a solid which is bounded above by z = 2 — 2z — y, below
by z = 0, and over the region in the xy plane defined by z > 0,y > 0,2x +y < 2.
As a type I region, this has a description 0 < z < 1,0 <y < 2 — 2z, and as a type
IT region, this has a description 0 <y < 2,0 <z <1 —y/2. Therefore, the iterated
integral we want to evaluate, using the type I description, is

1 p2—2x 1 y y=2—2z
// (2—2x—y)dyd$:/ (2—2z)y — = dx
0 Jo 0 2 ly=0
1
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Using the type II description of the region of integration gives the following iterated

integral:
r=1-y/2
> dx
=0

2 rl-y/2 2
// 22:cydxdy:/ <az(2y)x2
0 JO 0
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As expected (by Fubini’s Theorem), we get the same answer regardless of the order
in which we do the integration.

To check that this answer accords with geometry, notice that the tetrahedron
can be thought of as having base given by the triangle in the xy plane bounded by
x =0,y =0,2x+y = 2. This is a right-angle triangle with area 1, since it has base
of length 1 and height 2. The height of the tetrahedron is 2, since z(0,0) = 2, and
the formula for the volume of a tetradhedron is the area of the base times height
divided by 3, which in this case comes out to 2(1)/3 = 2/3, as expected.

In the last example, we saw how we were able to express a double integral over a region
which was both type I and type II as two different iterated integrals, where the order of
integration is different. The technique where we take an iterated integral and re-express
the integral in the other order of integration is sometimes called interchanging the order of
integration. A useful technique when you are asked to interchange the order of integration
is to start by sketching the region you are integrating over, using the bounds of the initial
iterated integral as your place to start.

Example. Sketch the region of integration of the following iterated integral, and then
interchange the order of integration:

// f(z,y) dy dz.



4

Because we are integrating with respect to y first and then = (remember, we determine
this by looking at the order of the differentials in the iterated integral), we know that the
bounds on the outer integral are with respect to the variable z, while the bounds on the
inner integral are with respect to y. That is, the region D we are integrating over is given
by the inequalities 0 < x < 2, —v4 — 22 < y < /4 — 22, A sketch of this region reveals
that it is the right half of a circle with radius 2, centered at the origin. We interchange the
order of integration by rewriting this region as a type II region.

If we think of this region as a type II region, then the y coordinate is bounded by
—2 <y < 2, and the z coordinate is given by 0 < x < /4 — y2. Therefore, interchanging

the order of integration yields
2 pr/4—y2
/2/0 f(x,y) dz dy.

In some problems, you will need to interchange the order of integration to solve the
problem:

Example. (Example 5, Chapter 16.3) Evaluate the iterated integral

/ / sin(y dy dx.

If we try to integrate the inner integral as is, we are immediately stuck since we do not
know of any formula for the indefinite integral, with respect to the variable y, of sin(y?).
Let us try interchanging the order of integration and see if that helps.

We begin (as always) by sketching the region of integration of this iterated integral. The
outer bounds give the inequalities 0 < x < 1, while the inner bound gives the inequalities
x <y < 1. This is a triangle with vertices (0,0),(0,1),(1,1), and we can re-express this
triangle as a type II region with the inequalities 0 < y < 1, 0 < x < y. Therefore, the
original iterated integral is equal to

1 ry
/ / sin(y?) dz dy.
0 JO

Notice that we can make progress on evaluating the inner integral, since it is now with
respect to x, not y. This iterated integral equals

/01 (a: sin(y?) ) dy = /01 ysin(y?) dy.

Something wonderful happens — we can now evaluate the remaining integral using a simple

u-substitution! . )
1
/ ysin(y?) dy = —COS(y)’ = —(1—cosl).
0

=y

=0
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